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Abstract 

The principal series o f  unitary representat ions of  the  noncompac t  symplectic group Sp(n, ~) 
is constructed for all n. The Lie algebra of Sp(n, ~ ) is isomorphic to the  algebra of bilinear 
products  of  boson operators in n dimensions.  The spec t rum of  the number  operator for the 
principal series representat ions is shown to be unbounded ,  bo th  from above and from below. 

1. Introduction 

The real symplectic group Sp(n) = Sp(n, N) is the noncompact simple Lie 
group given by 

Sp(n) = {g EM2n(R)IgtJg = J} (1.I) 

where M2n(R ) denotes the set of 2n x 2n real matrices, elements of which are 
typically written as 

( g l g 2 ) , g i E M n ( R )  
g= g3 g4 

and 

In this article the principal series of unitary representations of Sp(n) is 
constructed (Theorem 2.3). These representations also define skew-adjoint 
representations of the real Lie algebra sp(n) of the group Sp(n), 

(1.2) 
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This Lie algebra is isomorphic to the algebra of bilinear products of boson 
creation and destruction operators at ,  a s in n dimensions (Lipkin, 1965) 

= rat atl _ _ [as, a~] = 5~¢, [as, ate] t ~, ~, = 0 for 1 < ~,/3 < n (1.3) 

The explicit isomorphism is given by 

(a~a~ - -  a > ~ )  -+ ( L ~  - E ~ )  + (Eo~ + n, ~ + n - E~ + n, ,~ + n)  (1.4a) 
(a~a¢ - a ta  % -~ ~] - ( /~t3+E~)+(E~+n,~+n +E~+n,~+ n) (1.4b) 

(i/2) (a~afs + aea~ + a~a~ + a'~a~) -+ --(E,~ + n, ~ + E~ + n, ~) (I .4c) 

(i/2) (a~ap + ac, a ~ - ac, a ~ - a~a~) ~ (Ecq~+ n + El3" c~ + n) (I .4d) 

where E,~ E M 2 n ( R )  denotes the matrix whose only nonzero entry at the inter- 
section of the a row and fl column equals unity. 

We shall show that the principal series of Sp(n)  is indexed by pairs (e, u), 
where e = (el ,  e2, • • . ,  en) is an n-tuple with integral entries e r = 0 or 1 and 
v = (ul, v 2 , . . . ,  %) is an n-tuple of real numbers. Moreover, the spectrum of 
the number operator 

n 

E (a~ac~ + I/2) (1.5) 

for the (e, v) representation is the set of all even (odd) integers if £r= 1 er is 
even (odd), cf. equation 2.30. As a consequence of this unbounded (from above 
and below!) spectrum, there is no ground state[ > satisfying ~a~ I> = 0. 

A single representation of sp(1) has previously been obtained with the 
spectrum of the number operator unbounded from above and below by 
Biedenharn and Louck (1971). They outline the possible applicability of Sp(3) 
representations to the problem of extending (dichotomic) conjugation symmetry 
(s-parity) (Biedenharn, 1969) to a complete classification scheme for rotational 
bands of SU(3), a subgroup of Sp(3) (Racah, 1964). 

However, as an algebraic model in the sense of Rosensteel and Rowe (1975), 
the fact that the number operator is unbounded from below precludes their 
application to collective motion problems. 

We call to the reader's attention that the Lie algebras su(1,1),  so(2,1) and 
sl(2) are all isomorphic to sp(1). Representations of these Lie algebras have been 
obtained by many authors (Ui, 1968; Bargmann, 1947; Gelfand and Graev, 
1956; Goshen and Lipkin, 1959; Itzykson, 1967). 

2. Principal Series Representat ions o f  Sp(n)  

The principal series for Sp(n)  is given in Theorem 2.3. As necessary results 
for the construction of this series, we obtain the Cartan (Proposition 2.1) and 
Iwasawa (Proposition 2.2 and its corollary) decompositions o f  Sp(n) .  As 
general references in Lie group representation theory, we recommend in order 
of increasing mathematical complexity Hermann (1966), Mackey (t 963), and 
Warner (I972). 
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The Killing form on the Lie algebra sp(n), equation (1.2), is given by 

(x,y) = (2n + 2)Tr(xy) (2.1) 

Given this, the Caftan decomposition is immediate. 

Proposition 2.1. A Caftan decomposition for sp(n) is given by 

sp(n) ~- k 0 P (vector space direct sum) 

where the Killing form is negative-definite on k, 

k = x =  I x l t = - x 1 , x 2 t = x 2  
--X 2 X 1 

positive-definite on p, 

and the map 

k @ p ~ k @ p  

x + y - ~ x - y ,  x E k ,  y E p  

is an automorphism (Cartan invotusion) of sp(n). 

A maximal abelian subspace a o fp  is given by the diagonal matrices 

a = {  H=~c°iHi lHi=Ei i -Ei+n' i+n ) i=1 (2.2) 

Let a* be the real dual ofa. I f~  Ea*,  then set 

g~ = ( x  ~ sp (n) I IX, HI = ~(H)X, all H ~ a) 

Ifga :~ {0} and a 4= 0, then o~ is called a restricted root. Now for the simple 
Lie algebra, sp(n), the dimension ofga for each restricted root a is unity. In the 
following list is given an element e~ E g~ for each restricted root a: 

eca f . w i  = Ei j  - E j  + n, i + n, i =/=/ 

e_,.r,.i=E~,i+,, +F~j.~+n, i <  / 

ecoi+wi=Ei+n,j+Ej+n,i, i ( ]  

e-2¢~ i = E l ,  i + n 

e2coi = E i  + n, i ( 2 . 3 )  

where coj - c o i  denotes the root 
n 

H = ~ coiH i -> ~j - wi, etc. 
i = l  
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Let a '  denote the set of H E a with a(H) v~ 0 for every restricted root ~. 
A Weyl chamber is a connected component in a'. Fix the Weyl chamber a +, 

a + = { H = ~ c o i H i l w , > w 2 > ' " > 6 o n > O } i = l  (2.4) 

Let ~+ denote the set of positive restricted roots, i.e., those restricted roots 
such that a(H) > 0 for a U H E a  +. Put 

n= eO+g~=(i~< .e~oj_ to i )~( i?  . e~ j+o~ i )~ (? . e2~ i )  (2.5) 

where Rea denotes the one-dimensional subspace spanned by ea. Then n is a 
nilpotent Lie algebra. We have now obtained the Iwasawa decomposition. 

Proposition 2.2. The Iwasawa decomposition of sp(n) is given by 

sp(n) ~- k G a Q n (vector space direct sum) 

If K, A, N are the analytic subgroups in Sp(n) corresponding to 
k, a, n, respectively, then the map 

K x A x N-* Sp(n) 

( x , h , z ) - * x . h . z ,  x E K ,  h E A ,  z E N  

is an analytic diffeomorphism onto Sp(n). 

Since k = so(2n) C3 sp(n), then K = SO(2n) N Sp(n). Moreover, K may be 
identified with U(n) via the isomorphism (Helgason, 1962) 

U(n) -+ K (2.6) 

for U + iV E U(n) with U, V real n x n matrices. One readily computes that 
A = exp (a) is given by 

A = {h = diag(hl, h2,. • •, hn,h~ 1,h~1,. • • ,h~ 1), hi > 0) (2.7) 

The Iwasawa subgroup Z = A • N is shown to be 

( \ 23 (,7.1/.)_ 1 ~Sp(n) 

where 

Zll Z12 Z13~ 
"ZI= / 0  Z22 Z23 l ,  ZlI,Z22,Z33 >0 

\u 0 Z33l 
A corollary to the above proposition is evident. 

(2.8) 
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Corollary. The following map is an analytic diffeomorphism onto 
Sp(n): 

I;  × z - ,  s p ( n )  

( x , z ) - + x ' z ,  x ~ K ,  z E Z  

where K ~- U(n) via equation (2.6) and the Iwasawa subgroup Z is 
given in equation (2.8). 

If p ~ a* is defined by 

p(H) = ~Tr(adH t , )  for H E a (2.9) 

then 

p(H) = t e a  + 2 c o =  + 3 c o  a + • • • + n¢on 
I't 

f o r H =  ~ ooiHi~a (2.10) 
i = 1  

(i) f(gmhz) = e -(° + iv) (log h) ~(m) -1 f(g) 

forgESp(n),  m E M ,  h E A ,  z ~ N  

(Here log: A -+ a is the inverse to exp: a -+ A.) 

(ii) f dp(x)If(x)[2 < ~} (2.13) 
K / M  

where dp(x) is the K-invariant measure on K/M. F (~' v) is a Hilbert space with 
the inner product 

(f l , )~)  = .[ dp(x)f~(x)*f2(x) (2 . t4)  
K/M 

In general, an element v ~ a* is specified by an n-tupte (vi, u 2 . . . . .  un) of real 
numbers, 

~t n 

v(H)= ~ PiCOi f o r g =  ~ ooiHiEa (2.11) 
i = 1  i = 1  

The centralizer of A in K is given by 

M = {m = d iag (ml ,m 2 . . . . .  mn, ml,m2 . . . . .  rnn), mi = -+ t} (2.12) 

Via the isomorphism of equation (2.6), M may be identified with the subgroup 
of diagonal matrices in U(n) with entries -+ 1. 

The principal series for Sp(n) is then given as follows (Wallach, 1971): For 
each pair (~, v), where ~ is a unitary character of M and v is an element of a*, a 
unitary representation U (~' u) with carrier space F (~' u)is given. The carrier space 

F(~, v)= (2 Sp(n)-" Cl 
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The action of the unitary representation U (~' v) on F G v) is given by 

(U(g~o'v)f)(g) = f(golg) for g o , g E S p ( n ) ,  f E F  (~'v) (2.15) 

A simpler manifestation of the principal series, unitarily equivalent to the 
above, may be given. If r E  F G v), then set 

4 : K ~ C  
¢(x) = f(x), x E K  (2.16) 

Note that 

Moreover, 

where 

¢(xm)  = ~(m) -14(x),  x E K ,  m E M  (2.17) 

f (g)  = f ( x  " z) = e -(p + iv)(log h)4(x) (2.18) 

g = x - z E K .  Z - - - x . h . z E K . A . N  

On the other hand, every f (g)  of the form (2.i 8) where 4(x) satisfies (2.17) 
satisfies condition (i) in the definition o f F  G v). We thus obtain the compact 
realization of the principal series. 

Theorem Z3.  The unitary principal series of  Sp(n) is indexed by pairs 
(~, u), where ~ is a unitary character ofMand u E a*. The carrier space 
g2 ~ of the (~, v) representation rr G v) is independent of v, 

gZ~ = ( 4 : K ~ C I  

(i) 4(xm) = ~(m) -14(x) 

x ~ K ,  m ~ M  

(ii) f d#(x)I¢(x)[2 < oo} 
K/M 

g~ is a Hilbert space with the inner product 

(41,42) = f du(x)41(x)*42(x) 
K/M 

The action of the unitary representation rr (g' v) on the space g2 ~ is 

(~r(~'v) 4) (x) = ~11 (gol,x )-i<-~ ~=(gol, x) -ivy-2"'" ~o 

~,,,, (g o ~, x) -iv'-~ " 4 Ix(go*, x)] 
where 

go E Sp(n),  4 E g2 ~, x ~ K 
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and 

with 

go  1 " X = X(go I, X) " a p (go-l, X) 

X(go 1, x )  e K ,  f (go 1, x) E Z 

The Weyl group W is isomorphic to a semidirect product [Z2 n ] Sn, where 
the normal subgroup Z2 n is the direct product of n-copies of Z> the multi- 
pticative group with elements -+1, Sn is the permutation group on n symbols, 
and the action of Sn on Z2 n is the obvious one. The Weyl group acts on the 
space of pairs (~, v) by 

(~, v) -* (~ ,  ~9 for s = (x, p) ~ [ z f  I & 

where for X = (Xl, X2 . . . . .  Xn) EZ2 n andp ESn,  

~ = (epO), ep(2),. •., ep(n)) for ~ = (el, e2 . . . . .  en) 

and 

v s = (XlvpO), X2vv(2) . . . . .  XnVp(n)) for v = @1, v2 . . . . .  Vn) 

Then n (~' v) is equivalent to zr (~s' ~s) for all s ~ W (Bruhat, 1956). Moreover, 
rr (~' ~) is irreducible if (~, v) is inequivalent to (~s, v s) for all s ~ W, s 4= identity 
(Bruhat, 1965). Hence, 7r (~' v) is irreducible for almost every pair (~, v). 

Action o f  the Subgroup U(n). The action of U(n) is independent of v: 

(rr(g~ v)¢) (x) = qS(go 1 x) (2.19) 

for go E K and ~ E ~2 ~, x E K. With the identification of K with U(n) given by 
equation (2.6), the above action is unitarily equivalent to the left regular 
representation of U(n) on L 2 "[U(n)] ~, the subspace of square-integrable 
complex-valued functions on U(n) satisfying 

~(xm) = ~(rn) - i¢(x) (2.20) 

for x C U(n), m ~ M, ¢ E k 2 ,[ U(n)] ~. 
As guaranteed by the Peter-Weyl theorem, the matrix elements of the 

inequivatent irreducible unitary representations of U(n) form a basis for the 
space of squaredntegrable complex-valued functions on U(n). The inequivalent 
irreducible unitary representations of U(n) (Gelfand and Zetlin, 1950; 
Hamermesh, 1962) are indexed by n-tuples of integers [i] = [ill 2 • • • in] with 
il >-- i2 >--" "" > in ; the matrix elements ~tq~ (x) are indexed in the Gelfand 
basis by triangular arrays: 

PnPI2Px3 . . . .  Pin i 
!P)= Pz2P23 P2n (2.21) 

",P nn / 
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where the entries pa¢ are integers satisfying 

il = Pll, /2 = P12 . . . . .  in =Pln (2.22) 

and the "betweenness" condition, 

Pr-l,O~-I <--Pra <-G Pr-l,co r =  2, 3 , . . . , n ,  c~=r,r+ 1 , . . . , n  

(2.23) 

Thus a spanning set for/_ 2 i[U(n)] ~ satisfying equation (2.20) is given by 

~[q~(x)~= ~ ~(m-1)-lN[qi]p(Xm) (2.24) 

A unitary character ~ of  M is given by an n-tuple e = (el, e2 . . . . .  en) with 
e/= 0, 1, 

~(m) = m{ lm~ ~ . . .  m~n (2.25) 

for m = diag(ml, m 2 , . . . ,  mn) EM. Moreover, we have 

m Ip)= m~ wl m~ w~ . "  mn wn Ip ) (2.26) 

for m = diag(m a, m2 . . . . .  mn) E M ,  where the weights are given by 

Wl = Pnn 

W2 =, (Pn-1, n-I + Pn-1, n) -- Pnn 
t 

wn ~ (Pn + P12 + ' ' "  +Ptn) -- (P22 +" "" + P2n) (2.27) 

i.e., w r is the difference between the sum of  the entries of  the (n - r + 1) row 
and the sum of  the entries of  the (n - r + 2) row for r = 2, 3 . . . . .  n and w 1 = Pnn. 
We may thus compute 

[i1. , 
~[q~(x) ~= h [1 + ( - l f  r -  Wr] .~qp~X) (2.28) 

r = l  

Hence, a basis forL 2 [U(n)] ~ is given by the set of  all ~ p l  (x), where the indices 
[i] and p are restricted by the condition 

1~ [1 + (--1) e r -  wr] ~ 0 (2.29) 
r = l  

i.e., er even (odd) requires that Wr be even (odd) for all r = 1, 2 , . . . ,  n. 
Now the vector N[~ E L 2 [U(n)] ~ is an eigenstate of  the number operator 

belonging to the eigenvalue ~ ,=  1 G: 

~ = 1  ~=1 
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Hence, the spectrum of the number operator on L 2 [U(n)] ~ is the set of all even 
(odd) integers according to whether Z~= 1 er is even (odd). 
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